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Efficient construction of high-resolution TVD
conservative schemes for equations with source terms:

application to shallow water flows
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SUMMARY

High-resolution total variation diminishing (TVD) schemes are widely used for the numerical approxima-
tion of hyperbolic conservation laws. Their extension to equations with source terms involving spatial
derivatives is not obvious. In this work, efficient ways of constructing conservative schemes from the
conservative, non-conservative or characteristic form of the equations are described in detail. An upwind,
as opposed to a pointwise, treatment of the source terms is adopted here, and a new technique is
proposed in which source terms are included in the flux limiter functions to get a complete second-order
compact scheme. A new correction to fix the entropy problem is also presented and a robust treatment
of the boundary conditions according to the discretization used is stated. Copyright © 2001 John Wiley
& Sons, Ltd.

KEY WORDS: boundaries; conservative schemes; entropy; flux limiter; high resolution; shallow water;
source terms; TVD

1. INTRODUCTION

For many practical applications it is accepted that the unsteady flow of water in a one-
dimensional approach is governed by the shallow water or St. Venant equations. These
represent the conservation of mass and momentum along the direction of the main flow. In the
field of computational hydraulics, where modelling can be dominated by the effects not only
of source terms but also of quantities that vary spatially but independently of the flow
variables, it has traditionally been difficult to have only one method able to reproduce
automatically any general situation. The numerical modelling of unsteady flow in rivers is a
complicated task and the difficulties grow as the pretensions to obtain better quality or more
general solutions do.

* Correspondence to: Area de Mecanica de Fluidos, CPS, Universidad de Zaragoza, C/. Maria de Luna 3, 50015
Zaragoza, Spain.

Copyright © 2001 John Wiley & Sons, Ltd.
Recei�ed September 2000

Accepted January 2001



J. BURGUETE AND P. GARCÍA-NAVARRO210

There exist good methods developed to deal with gas dynamics problems (Euler equations),
able to cope with complex systems of discontinuities and shock waves [1,2]. Among them, flux
difference splitting methods are widely used for the numerical approximation of homogeneous
conservation laws where the flux depends only on the conservative variables. In many practical
situations common in hydraulics, not only are source terms part of the mathematical model,
but the flux can vary spatially, even when the conservative variables do not. The extension of
the basic techniques to cope with these two situations keeping their original properties is not
straightforward and is addressed in this work.

Many upwind schemes have been reported successful for flow in channels [3,4]. However,
their application to river flow is not so common in the literature and their adaptation to river
hydraulics is hindered by the irregular topography. The presence of extreme slopes, high
roughness and strong changes in the irregular geometry represent a difficulty that can lead to
important numerical errors presumably arising from the source terms of the equations.

In this paper, the main focus is on the construction of methods that address the issue of
solving conservation laws with source terms and a general flux function that can vary
independently of the conserved variables. The discretization is constructed in a manner that
retains the conservative character of the schemes seeking an exact balance between the flux
gradient and the source terms discretization so that any balance between flux and source terms
which exists as part of the underlying mathematical model (e.g. at the steady state) is
maintained. This has been already addressed and applied in a variety of different situations.
For example, Smolarkiewicz [5] has adapted his own MPDATA schemes to solve inhomoge-
neous equations arising from geophysical flows; LeVeque [6] has incorporated the modelling of
source terms for shallow water flows within his wave-propagation algorithm; and Roe’s
scheme [7] has been modified by a number of authors to include source terms, the research of
Glaister [3], Vázquez-Cendón [8], Bermúdez and Vázquez [9] and Garcia-Navarro and Vazquez
Cendon [10] being of particular relevance to this work. In the papers discussing Roe’s scheme,
the discretization of the source terms has been constructed according to that of the numerical
fluxes to ensure that in the absence of source terms, the conservative fluxes are retrieved for
accurate modelling of discontinuous solutions.

The intention of this paper is to accomplish the same but replacing the numerical flux
concept, usual in finite volume formulations, by a different and better adapted point of view.
Due to the fact that the numerical source integral cannot, in general, be written as a difference,
it is impossible to allow it to be included within the numerical flux and the balance which is
sought between flux derivatives and sources in the flux-based schemes can only be obtained
locally by balancing numerical flux differences through the edges of a control volume, and
integrals of the source terms. The idea is presented not only in the first-order case but also in
the presence of flux limited high-resolution corrections. Traditionally, total variation diminish-
ing (TVD) schemes have been constructed under certain condition derived from the homoge-
neous system of conservation laws. The TVD property can then by violated in the presence of
important source terms. This work is also concerned with constructing high resolution schemes
for the full equations so that, although the TVD property is not guaranteed in the presence of
source terms, with an upwind discretization of these, their limitation is required in order to
maintain a balance with the fluxes. Furthermore, the introduction of the source term in the
definition of the limiting functions is necessary to preserve second-order of accuracy. On the
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other hand, the mathematical formulation of the shallow water equations is revisited and the
optimal form of the equations is presented for the case where the flux of the conserved
variables depends on a spatially varying quantity which is independent of the solution.

1.1. The equations

We are interested in solving as efficiently as possible one-dimensional hyperbolic systems with
source terms. In a general conservative form

�u� (x, t)
�t

+
dFb (x, u� )

dx
=Hb (x, u� ) (1.1)

where u� is the vector of conserved variables, Fb the vector of fluxes and Hb that of source terms.
Our interest is led by the numerical modelling of one-dimensional shallow water flows of
practical application in hydraulics such as river flows. In that case

u� =�A
Q
�

, Fb =
�
�
�
�
�

Q
Q2

A
+gI1

�
�
�
�
�

, Hb =
� 0

g [I2+A(S0−Sf)]
�

where Q is the discharge, A is the wetted cross section, g is the acceleration of gravity and S0

is the bed slope, I1 and I2 account for pressure forces

I1(x, A)=
� h(x,A)

0

[h(x, A)−z ]�(x, z) dz, I2(x, A)=
� h(x,A)

0

[h(x, A)−z ]
��(x, z)

�x
dz

(h the water depth and � the channel width at a position z from the bottom) and Sf is
associated with bed friction and represented by the empirical Manning law

Sf=
n2Q2P4/3

A10/3

where n is the coefficient of bed roughness and P the wetted perimeter.
It is important to remark that in the conservative form (1.1) the total derivative dFb /dx is

used to represent the increments due to the pure spatial variations in x and those due to the
variations of the conserved variable u� , whereas the partial derivative is reserved to represent
only the variation due to the x with u� constant. The difference between the variations due to
both u� and x from those due to only one of the variables is subtle but significant. When the
dependence of a general function is f= f(x, u), the relation between total and partial deriva-
tives is

df(x, u)
dx

=
�f
�x

+
�f
�u

�u
�x
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and the discrete increments �f/�x approach actually the total derivative df/dx, and not the
partial derivative �f/�x. For this reason, partial spatial derivatives of this type of functions
should be avoided in the formulations. This is an important detail not stressed in the related
literature that has proved decisive in the development of the schemes described in this work.

From the equations in conservative form (1.1), it is possible to pass to an associated
non-conservative form using

dFb (x, u� )
dx

=
�Fb (x, u� )

�x
+

�Fb (x, u� )
�u�

�u�
�x

=
�Fb (x, u� )

�x
+J(x, u� ) �u�

�x

where

J=
�Fb
�u�

is the Jacobian matrix of the original system. Redefining the source term as

Hb �(x, u� )=Hb (x, u� )−�Fb (x, u� )
�x

the non-conservative form is obtained

�u� (x, t)
�t

+J(x, u� ) �u� (x, t)
�x

=Hb �(x, u� ) (1.2)

In the shallow water system of equations, the following holds:

dh
dx

=
�h
�x

+
1
B

�A
�x

dI1

dx
=

�I1

�x
+

�I1

�A
�A
�x

=I2+A
�h
�x

+
A
B

�A
�x

=I2+A
dh
dx

and the Jacobian and new source terms of the non-conservative formulation (1.2) are

J=
� 0 1

c2−�2 2�

�
, Hb �=

� 0
gA [S0−Sf− (dh/dx)+ (1/B)(dA/dx)]

�
(1.3)

with B the width at the free surface, c=�g(A/B) the celerity of the infinitesimal surface wave
and �=Q/A the mean fluid velocity. Note that the standard formulations of previous works
based on these equations do not contain the (1/B)(dA/dx) term. It appears as a consequence
of the necessity of avoiding partial x derivatives in order to ensure the success of the
discretization, as pointed above.
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It is now convenient to develop the characteristic form of the equations, important for the
correct formulation of upwind schemes and boundary conditions. This form is obtained from
a diagonalization of the Jacobian in (1.2). Calling P and P−1 the matrices that make diagonal
J, and � the resulting diagonal matrix

J=P�P−1, �=P−1JP

The matrix � is formed by the eigenvalues of J, and P is constructed with its eigenvectors.
Let w� be the set of variables (characteristics variables) that verify

du� =P dw� , dw� =P−1 du�

Then

�w� (x, t)
�t

+�(x, w� )
�w� (x, t)

�x
=P−1(x, w� )Hb �(x, w� ) (1.4)

For the shallow water equations, the above matrices are

P=
� 1 1

�+c �−c
�

, P−1=
1
2c
�c−� 1

c+� −1
�

, �=
��+c 0

0 �−c
�

2. CONSERVATIVE SCHEMES

The conservation law (1.1) contains an important physical meaning. A spatial integration

� L

0

��u�
�t

+
dFb
dx
�

dx=
� L

0

Hb dx �
� L

0

�u�
�t

dx=Fb 0−Fb L+
� L

0

Hb dx (2.1)

expresses that the time variation of the conserved variable in a given volume is equal to the
difference between the incoming and the outgoing fluxes plus the contribution of the source
term. When discretizing a conservation law of this kind, incorrect numerical approximations
can lead to bad behaviour in the solution and unacceptable errors which make them useless
techniques. Schemes properly approximating the conservation Equation (2.1) are called
conservative schemes. Some ways of defining them are presented next.

2.1. Conser�ati�e schemes using a conser�ati�e formulation

The most common definition of a conservative scheme follows the structure

�u� i
n

�t
=Hb i*−

1
�x

(Fb i+ (1/2)* −Fb i− (1/2)* ) (2.2)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 209–248



J. BURGUETE AND P. GARCÍA-NAVARRO214

where Hb * is the numerical source of cell i and Fb * is the numerical flux at cell interface i+ (1/2).
They represent a suitable approximation to the true source and flux term in the equation so
that the scheme gets the properties required (Figure 1). Schemes so defined will be conservative
since they produce a good approximation of (2.1) cancelling the contributions of the flux at the
grid interface, being the global variation of the conserved variable due only to the source terms
and to the flux at the boundaries. � will be used for time increments �f i

n= f i
n+1− f i

n, and � for
spatial increments �f i+ (1/2)

n = f i+1
n − f i

n.

�
N−1

i=1

�u� i
n

�t
�x=

�
�t

�
N−1

i=1

u� i
n�x�

�

�t
� xN− (1/2)

x 1/2

u� dx

�
N−1

i=1

[Hb i*�x− (Fb i+ (1/2)* −Fb i− (1/2)* )]= �
N−1

i=1

[Hb i*�x ]+Fb 1/2* −Fb N− (1/2)*

�Fb 1/2−Fb N− (1/2)+
� xN− (1/2)

x 1/2

Hb dx

A numerical flux Fb i
T can also be defined at the grid nodes. The difference in this flux between

two nodes can be decomposed into parts affecting the nodes on the left and right. Schemes so
built follow

�Fb i+ (1/2)
T =Fb i+1

T −Fb i
T=�Fb i− (1/2)

R +�Fb i+ (1/2)
L

�u� i
n

�t
=Hb i*−

1
�x

(�Fb i+ (1/2)
R +�Fb i− (1/2)

L ) (2.3)

This also leads to conservative schemes since this form is equivalent to (2.2) Figure 2. It is
possible to define a function �a so that

Figure 1. Adding up all the variable increments �u� i, the numerical flux contributions at the interfaces
Fb i+ (1/2)* cancel producing a conservative scheme.
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Figure 2. Adding up all the flux difference parts �Fb i+ (1/2)
R and �Fb i+ (1/2)

L the flux contributions in the grid
nodes Fb i

T cancel producing a conservative scheme.

�Fb i+ (1/2)
L =

1
2

�Fb i+ (1/2)
T +�a i+ (1/2), �Fb i+ (1/2)

R =
1
2

�Fb i+ (1/2)
T −�a i+ (1/2)

hence from (2.3)

�u� i
n

�t
=Hb i*−

1
�x

�1
2

(Fb i+1
T −Fb i

T)−�a i+1/2+
1
2

(Fb i
T−Fb i−1

T )+�a i−1/2
n

and the interface numerical flux can be defined

Fb i+ (1/2)* =
1
2

(Fb i+1
T +Fb i

T)−�a i+ (1/2)=Fb i
T+�Fb i+ (1/2)

R =Fb i+1
T −�Fb i+ (1/2)

L (2.4)

In addition, and following evidence from previous works [8,10,11], we consider a non-centred
contribution of the source terms

Hb i+ (1/2)
T =Hb i+ (1/2)

R +Hb i+ (1/2)
L

so that the following formulation for the conservative scheme is proposed:

�u� i
n

�t
=
�

Hb −
�Fb
�x
�

i− (1/2)

L

+
�

Hb −
�Fb
�x
�

i+ (1/2)

R

(2.5)

As an example, a first-order upwind discretization admits a decomposition like

Fb i
T=Fb i

n, �Fb i+ (1/2)
L = (�Fb +)i+ (1/2)

n , �Fb i+ (1/2)
R = (�Fb −)i+ (1/2)

n

where �Fb + and �Fb − are associated to positive and negative propagation velocities respec-
tively, whereas second-order centred discretization admits a decomposition like
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Fb i
T=Fb i

n, �Fb i+ (1/2)
L =�Fb i+ (1/2)

R =
1
2

�Fb i+ (1/2)
n

2.2. Conser�ati�e schemes using a non-conser�ati�e formulation

Conservative schemes can also be derived from the non-conservative formulation of the
Equations (1.2). The advantage is that the latter form tends to be simpler to deal with than the
conservative form. We need to establish the conditions under which schemes derived in this
way are equivalent to Schemes (2.2) and (2.5) derived from the conservative equations. First
of all, the following equality must hold at the discrete level:

Gb i+ (1/2)�
�

Hb −
�Fb
�x
�

i+ (1/2)

=
�

Hb �−J
�u�
�x
�

i+ (1/2)

(2.6)

Note that this equality requires a non-pointwise treatment of source terms and is an extension
of the Roe’s average [2,7]. From (2.6) it follows that two equivalent forms of building
conservative schemes with de-centred source terms are possible. Defining Gb as

Gb i+ (1/2)�
�

Hb −
�Fb
�x
�

i+ (1/2)

(2.7)

the forms (2.2) and (2.5) are achieved, whereas defining this term like

Gb i+ (1/2)�
�

Hb �−J
�u�
�x
�

i+ (1/2)

(2.8)

with the restriction (2.6), a conservative scheme is also obtained. In any case

�u� i
n

�t
=Gb i− (1/2)

L +Gb i+ (1/2)
R (2.9)

where the decomposition in left and right parts has to be defined in every numerical scheme.
In the particular case of the shallow water equations, condition (2.6) imposes the following

equality:

� 0
g [I2+A(S0−Sf)]

�
i+ (1/2)

−
�

�x
� Q

(Q2/A)+gI1

�
i+ (1/2)

=
� 0

gA(S0−Sf+ (1/B)(dA/dx−dh/dx))
�

i+ (1/2)

−
� 0 1

c2−�2 2�

�
i+ (1/2)

�

�x
�A

Q
�

i+ (1/2)

(2.10)

which considering that
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�dh
dx
�

i+ (1/2)

�
��h

�x
�

i+ (1/2)

,
�1

B
dA
dx
�

i+ (1/2)

�
�1

B
�A
�x
�

i+ (1/2)

(I2)i+ (1/2)�
��I1

�x
−A

�h
�x
�

i+ (1/2)

reduces (2.10) to

−
�

�x
�Q2

A
�

i+ (1/2)

=
�

g
A
B

�A
�x

− (c2−�2)
�A
�x

−2�
�Q
�x
n

i+ (1/2)

and this is satisfied if the following average values are defined:

ci+ (1/2)=
�

g
Ai+ (1/2)

Bi+ (1/2)

, �i+ (1/2)=
Qi+1/�Ai+1+Qi/�Ai

�Ai+1+�Ai

(2.11)

The choice of the discrete averages Ai+ (1/2), Bi+ (1/2), (S0)i+ (1/2) and (Sf)i+ (1/2) is open but, in
our work, this has not proved significant. The simplest arithmetic average has been applied.

2.3. Conser�ati�e schemes using a characteristic formulation

Conservative schemes based in the characteristic form of the equations are the basis of the
wave decomposition in upwind schemes. From (1.4) it is possible to rewrite

�w�
�t

=P−1�Hb �−J
�u�
�x
�

=P−1Gb

Then a discrete wave decomposition into left and right moving contributions can be done

(P−1Gb )i+ (1/2)= (�LP−1Gb )i+ (1/2)+ (�RP−1Gb )i+ (1/2)

being �L and �R diagonal matrices to be defined in each numerical scheme. In order to ensure
the conservative character of the scheme

(�L+�R)i+ (1/2)=I (2.12)

Multiplication by P gives the final form for the discretization in terms of the conserved
quantities

�u� i
n

�t
= (P�LP−1Gb )i− (1/2)+ (P�RP−1Gb )i+ (1/2) (2.13)

Note that this discretization requires again a non-centred formulation of source terms, being
equally possible (2.7) or (2.8) for Gb . A pointwise treatment of the source terms can also be
used, changing (2.13) to
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�u� i
n

�t
=Hb i

n−
�

P�LP−1 �Fb
�x
�

i− (1/2)

−
�

P�RP−1 �Fb
�x
�

i+ (1/2)

(2.14)

3. FIRST-ORDER UPWIND SCHEME

Upwind schemes are based on the idea of approximating the spatial derivatives by non-centred
differences biased in the sense of propagation of information in the physical problem. In order
to construct a general first-order scheme, the following is usually written

�u� i
n=�t

�
Hb i*−

��Fb +

�x
�

i− (1/2)

n

−
��Fb −

�x
�

i+ (1/2)

n n
(3.1)

where �Fb − is associated to negative velocities and �Fb + to positive velocities. A linear analysis
of the homogeneous equations shows that the stability condition is Courant–Friedrich–Lewy
number (CFL)�1 and it will be dissipative provided that CFL�1, with

CFL=max��k � �t
�x

and �k being the eigenvalues of the Jacobian.
When the source terms are dominant, it may be necessary to introduce a semi-implicit

treatment for them in order to stabilize the scheme. One way to proceed is

Hb i*=�Hb i
n+1+ (1−�)Hb i

n�Hb i
n+�

��Hb
�u�

�u�
�t
�

i

n

�t=Hb i
n+�Ki

n�u� i
n

where K=�Hb /�u� is the Jacobian of the source term. The conservative form (2.13) can then be
expressed

(1−�Ki
n�t)�u� i

n=�t
�

Hb i
n−

�
P�LP−1 �Fb

�x
�

i− (1/2)

n

−
�

P�RP−1 �Fb
�x
�

i+ (1/2)

n n
(3.2)

The following wave decomposition is assumed in this scheme in order to select the appropriate
influence region in every case:

�L=�+ =
1
2

[I+sign(�)], �R=�− =
1
2

[I−sign(�)], �Fb � =P��P−1�Fb
(3.3)

An upwind treatment of the source terms is also possible using (2.13) instead of (2.14). Using
a semi-implicit treatment of source terms and the wave decomposition (3.3)
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(1−�Ki
n�t)�u� i

n=�t [(P�+P−1Gb )i− (1/2)
n + (P�−P−1Gb )i+ (1/2)

n ]

With the notation

Gb � =P��P−1Gb (3.4)

the scheme reduces to a simpler form

(1−�Ki
n�t)�u� i

n=�t [(Gb +)i− (1/2)
n + (Gb −)i+ (1/2)

n ] (3.5)

In the presence of transcritical flow, this numerical scheme does not produce good results due
to the change of sign from negative to positive in the advection velocities. The numerical
scheme is not able to interpret the transition as smooth and gives rise to non-physical shocks
(entropy problem). The situation is associated to a local lack of numerical dissipation that can
be corrected as outlined in Appendix A.

It is worth stressing here that this first-order upwind scheme produces second-order accuracy
in space for steady cases [8]. Assuming for simplicity a positive propagation velocity in (3.5) at
steady state

�
Hb −

�Fb
�x
�

i− (1/2)

n

=0

which means that

Fb i
n=Fb i−1

n +�xHb i− (1/2)
n

This is the mean point integration rule, an approximation of second-order. This gain in
accuracy is the main advantage of the upwinding of the source terms. Actually, taking a
pointwise approach

Fb i
n=Fb i−1

n +�xHb i
n

which is the Euler integration rule, a first-order approximation.
The conservative character of this scheme is proved by the existence of a nodal numerical

flux and a wave decomposition like

Fb i
T=Fb i

n, �Fb i+ (1/2)
L = (�Fb +)i+ (1/2)

n , �Fb i+ (1/2)
R = (�Fb −)i+ (1/2)

n

and an interface numerical flux

Fb i+ (1/2)* =
1
2

{Fb i
n+Fb i+1

n − [P sign(�)P−1�Fb ]i+ (1/2)
n }
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4. SPATIALLY SECOND-ORDER TVD SCHEME

4.1. Scalar case

As a preliminary step, the TVD conditions will be outlined for the scalar case. Assuming for
simplicity a homogeneous scalar conservation law

�u(x, t)
�t

+
�F(u)

�x
=0 �

�u(x, t)
�t

+�(u)
�u(x, t)

�x
=0

with �=�F/�u. The total variation (TV) of the discrete solution is defined as

TVn=�
i

�ui+1
n −ui

n�

Then a scheme will be TVD if it satisfies the following property that prevents oscillatory
solutions

TVn+1=�
i

�ui+1
n+1−ui

n+1���
i

�ui+1
n −ui

n�=TVn (4.1)

A general explicit scheme that can be written in the form

�ui
n= −�(�Fi− (1/2)

+ +�Fi+ (1/2)
− )

with �=�t/�x, admits the definition of the following coefficients

�Fi+ (1/2)
+ =Ci+ (1/2)

+ �ui+ (1/2)
n , �Fi+ (1/2)

− =Ci+ (1/2)
− �ui+ (1/2)

n

The scheme will be TVD if (4.1) is used so that the coefficients (see [1] or [14] for more detail)

Ci+ (1/2)
− �0, Ci+ (1/2)

+ �0, �(Ci+ (1/2)
+ −Ci+ (1/2)

− )�1 (4.2)

These conditions are automatically fulfilled by the first-order upwind scheme with the CFL
stability condition.

The TVD condition for higher-order schemes involves scalar flux limiter functions [1]

�u� i
n= −�

	
(�F+)i− (1/2)

n + (�F−)i+ (1/2)
n

+
1
2

[(�+�F+)i− (1/2)
n − (�+�F+)i− (3/2)

n + (�−�F−)i+ (1/2)
n − (�−�F−)i+ (3/2)

n ]
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The flux limiter functions are here defined combining second-order spatial centred and upwind
schemes, for preserving the second-order in space, and according to (4.2) for avoiding
numerical oscillations. In order to preserve the second-order of accuracy, the dependence of
the flux limiter functions is defined as

�i+ (1/2)
+ =�(r i+ (1/2)

+ )=�
��Fi+ (3/2)

+

�Fi+ (1/2)
+

�
, �i+ (1/2)

− =�(r i+ (1/2)
− )=�

��Fi− (1/2)
−

�Fi+ (1/2)
−

�
With this dependence, it can be easily seen that �(r)=1, �r produces the second-order in space
upwind scheme (unstable), and that �(r)=r, �r reduces to the central Lax’s scheme second-
order accurate in space (unstable). Infinite spatially second-order schemes can be created
for intermediate values of �(r). The zone of second-order accuracy in space is shaded in
Figure 3.

Applying TVD conditions (4.2) the flux limiter will be a positive function so that [1]

�(r)=0, �r�0; �(r)�2r, �r�0

and it produces the following stability condition:

CFL�
1

1+
1
2

max(�)
(4.3)

It is usual to establish the restriction �(r)�2 in order to be able to work up to CFL�1
2. The

intersection between the second-order region and the TVD region for the flux limiter functions
is represented in Figure 4. Many particular flux limiter functions are defined in the literature.
We use the most usual [1,15]

Figure 3. Second-order of approximation region for the flux limiter function.
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Figure 4. Second-order TVD region for the flux limiter functions.

Superbee: �(r)=max[0, min(1, 2r), min(2, r)]

Van-Lear: �(r)=
r+ �r �
1+ �r �

Van-Albada: �(r)=

�
�
�
�
�

r+r2

1+r2 �r�0

0 �r�0

Minmod: �(r)=max[0, min(1, r)]

4.2. Extension to systems with source terms

The second-order central Lax’s scheme and the second-order upwind approximation to the
space derivative, although unstable, are the basis for the construction of the second-order in
space TVD schemes. By means of an adequate limitation of the spatial second-order terms,
second-order accuracy can be preserved whilst oscillations are avoided. Once the conditions on
the flux limiter functions have been established so that the desired properties are achieved on
the solution to a scalar equation, a generalization to systems with source terms is desirable.
With a semi-implicit and pointwise treatment of the source terms, the second-order in space
TVD scheme is

(1−�Ki
n�t)�u� i

n=�t
	

Hb i
n−

��Fb +

�x
�

i− (1/2)

n

−
��Fb

�x
�

i+ (1/2)

n

+
1
2
��

�+ �Fb +

�x
�

i− (3/2)

n

+
�
�− �Fb −

�x
�

i+ (3/2)

n

−
�
�+ �Fb +

�x
�

i− (1/2)

n

−
�
�− �Fb −

�x
�

i+ (1/2)

n n

(4.4)
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where �+ and �− are in general matrices. One of the simplest ways to define the flux limiting
matrices �+ and �− for a flux Fb = (F1, . . . , Fk) is

�i+ (1/2)
� =

�
�
�
�
�
�
�

�
�(�F1)i+ (1/2)�1

�

(�F1)i+ (1/2)
�

�
· · ·

�
�(�Fk)i+ (1/2)�1

�

(�Fk)i+ (1/2)
�

�
�
�
�
�
�
�
�

(4.5)

Another form is shown in reference [4].
This TVD second-order in space scheme is conservative since it admits the following wave

decomposition:

Fb i
T=Fb i

n

�Fb i+ (1/2)
L = (�Fb +)i+ (1/2)

n −
1
2

(�+�Fb +)i− (1/2)
n +

1
2

(�−�Fb −)i+ (3/2)
n

�Fb i+ (1/2)
R = (�Fb −)i+ (1/2)

n −
1
2

(�+�Fb +)i− (1/2)
n +

1
2

(�−�Fb −)i+ (3/2)
n

and the following numerical flux:

Fb i+ (1/2)* =
1
2

{Fb i
n+Fb i+1

n − [P sign(�)P−1�Fb ]i+ (1/2)
n + (�+�Fb +)i− (1/2)

n − (�−�Fb −)i+ (3/2)
n }

With an interest focussed on the correct treatment of problems involving source terms we
will work with the already defined generalized flux Gb i+ (1/2). With this notation, the conserva-
tive TVD second-order in space scheme with upwind treatment of source terms can be written

(1−�Ki
n�t)�u� i

n=�t
	

(Gb +)i− (1/2)
n + (Gb −)i+ (1/2)

n +
1
2

[(�+Gb +)i− (3/2)
n

+(�−Gb −)i+ (1/2)
n − (�+Gb +)i− (1/2)

n − (�−Gb −)i+ (3/2)
n ]



(4.6)

The unstable Lax’s scheme with non-pointwise source term is

(1−�Ki
n�t)�u� i

n=
�t
2

[(Gb +)i− (1/2)
n + (Gb −)i− (1/2)

n + (Gb +)i+ (1/2)
n + (Gb −)i+ (1/2)

n ]

In order to ensure this limit when �(r)=r, hence preserving the second-order of accuracy, the
limiting diagonal matrices �+ and �−, for Gb = (G1 . . . Gk), must be
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�i+ (1/2)
� =

�
�
�
�
�
�
�

�
�(G1)i+ (1/2)�1

�

(G1)i+ (1/2)
�

�
· · ·

�
�(Gk)i+ (1/2)�1

�

(Gk)i+ (1/2)
�

�
�
�
�
�
�
�
�

(4.7)

It is worth stressing that a rigorous upwind treatment of the source terms in the TVD scheme
imposes not only the limitation of the source terms but also their involvement in the definition
of the limitation function itself. However, it is possible to neglect the contributions of the
source terms in the limiter functions using the limiter matrix (4.5) instead of (4.7). Proceeding
this way, although the limitation of the flux is ensured and the scheme is free from numerical
oscillations, second-order is not ensured and a loss of accuracy is produced. On the other
hand, including the source terms in the definition of the limiters proposed in (4.7) is not hard
work since the vector components Gk must be equally calculated.

5. SECOND-ORDER IN SPACE AND TIME TVD SCHEME

To develop the schemes to second-order in time the approximation of the time derivatives to
second-order has to be included, which, with reference to system (1.1)

�u� i
n=

��u�
�t
�

i

n

�t+
1
2
��2u�

�t2

�
i

n

�t2+O(�t3)=
�

Hb −
�Fb
�x
�

i

n

�t+
1
2

�

�t
�

Hb −
�Fb
�x
�

i

n

�t2+O(�t3)

For the time derivative the following has to be taken into account:

�

�t
�

Hb −
�Fb
�x
�

=
�Hb
�u�

�u�
�t

−
�

�x
��Fb

�u�
�u�
�t
�

=K
�u�
�t

−
�

�x
�

J
�

Hb −
�Fb
�x
�n

where the Jacobians of the flux and source term have been used. Note that in this approxima-
tion the K(�u� /�t) and �(JHb )/�x terms appear due to the presence of the source term in the
equation. These terms are obviated in previous works but are relevant to the quality of the
results. With a central approximation of the spatial derivatives

�

�t
�

Hb −
�Fb
�x
�

i

n

=Ki
n �u� i

n

�t
−

1
�x

[(JGb )i+ (1/2)
n − (JGb )i− (1/2)

n ]+O(�x, �t)

and a central and semi-implicit discretization of the source terms, the Lax–Wendroff scheme
is obtained

�
1−Ki

n �t
2
�
�u� i

n=�t
�

Hb i
n−

Fb i+1
n −Fb i

n

2�x
�

−
�t2

2�x
[(JGb )i+ (1/2)

n − (JGb )i− (1/2)
n ] (5.1)
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The second-order in space and time scheme is stable provided that CFL�1 and dissipative if
CFL�1. Written as a sum of the first-order upwind plus second-order correction terms

�
1−Ki

n �t
2
�
�u� i

n=
�

Hb i
n−

��Fb +

�x
�

i− (1/2)

n

−
��Fb −

�x
�

i+ (1/2)

n n
+

�t
2�x

[(�Fb − −�tJ−Gb −)i+ (1/2)
n − (�Fb − −�tJ−Gb −)i− (1/2)

n

− (�Fb + +�tJ+Gb +)i+ (1/2)
n + (�Fb + +�tJ+Gb +)i− (1/2)

n ]

Similarly, an upwind second-order in space and time approximation can be derived. The
starting point is the same but the space derivatives are approximated in a non-centred form

�
1−Ki

n �t
2
�
�u� i

n=�t
	

Hb i
n−

3
2
���Fb +

�x
�

i− (1/2)

n

+
��Fb −

�x
�

i+ (1/2)

n n
+

1
2
���Fb +

�x
�

i− (3/2)

n

+
��Fb −

�x
�

i+ (3/2)

n n
−

�t2

2�x
[(J−Gb −)i+ (3/2)

n

− (J−Gb −)i+ (1/2)
n + (J+Gb +)i− (1/2)

n − (J+Gb +)i− (3/2)
n ]



(5.2)

The stability condition for this scheme is CFL�2 and it is dissipative if CFL�2.
A TVD scheme second-order accurate in space and time can be built from (5.2) as a sum of

the first-order upwind plus limited second-order correction terms, as

�
1−Ki

n �t
2
�
�u� i

n=�t
�

Hb i
n−

��Fb +

�x
�

i− (1/2)

n

−
��Fb −

�x
�

i+ (1/2)

n n
+

�t
2�x

{[�−(�Fb −�tJGb )−]i+ (3/2)
n − [�−(�Fb −�tJGb )−]i+ (1/2)

n

− [�+(�Fb +�tJGb )+]i− (1/2)
n + [�+(�Fb +�tJGb )+]i− (3/2)

n } (5.3)

The flux limiter functions �(r) have to preserve the second-order, therefore

�(r)=1, �r � second-order in space and time upwind scheme

�(r)=r, �r � Lax–Wendroff (5.4)

Infinite schemes can be created again that would be intermediate between the fully upwind
or fully central second-order approximations. For the second-order in space and time scheme
the TVD second-order region is the same as that of Figure 4, so that all the limiting functions
defined in Section 4 are also suitable for this scheme. The limiting functions �+ and �− will
be defined in terms of
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Rb � = (�Fb ��tJGb )�

with Rb = (R1, . . . , Rk), matrices of the form

�i+ (1/2)
� =

�
�
�
�
�
�
�

�
�(R1)i+ (1/2)�1

�

(R1)i+ (1/2)
�

�
· · ·

�
�(Rk)i+ (1/2)�1

�

(Rk)i+ (1/2)
�

�
�
�
�
�
�
�
�

The desired second-order properties are then achieved and, although the TVD condition is
only strictly ensured for the characteristic variables, it produces minimum oscillations in
practice when dealing with conservative variables. The stability condition is CFL�1 loosing,
by limiting the second-order upwind scheme, the property of remaining stable up to CFL=2.

Scheme (5.3) is defined conservative since it admits a wave decomposition like

Fb i
T=Fb i

n

�Fb i+ (1/2)
L = (�Fb +)i+ (1/2)

n −
1
2

(�+Rb +)i− (1/2)
n +

1
2

(�−Rb −)i+ (3/2)
n

�Fb i+ (1/2)
R = (�Fb −)i+ (1/2)

n +
1
2

(�+Rb +)i− (1/2)
n −

1
2

(�−Rb −)i+ (3/2)
n

and an interface numerical flux

Fb *i+ (1/2)=
1
2

{Fb i
n+Fb i+1

n − [P sign(�)P−1�Fb ]i+ (1/2)
n + (�+Rb +)i− (1/2)

n − (�−Rb −)i+ (3/2)
n }

Note that vector Rb includes source terms, therefore a coupling of flux and source terms
appears as a consequence of the second-order in time.

In order to complete the construction of the scheme, an upwind treatment of the source
terms will be applied now. For that purpose, and using again the notation based on variable
Gb i+ (1/2), the upwind TVD second-order in space and time scheme can be expressed as a sum
of the first-order upwind plus limited corrections to second-order as�

1−Ki
n �t

2
�
�u� i

n=�t [(Gb +)i− (1/2)
n + (Gb −)i+ (1/2)

n ]

+
�t
2
	�

�+�1−
�t
�x

J+�Gb +n
i− (1/2)

n

−
�
�+�1−

�t
�x

J+�Gb +n
i− (3/2)

n

+
�
�−�1+

�t
�x

J−�Gb −n
i+ (1/2)

n

−
�
�−�1+

�t
�x

J−�Gb −n
i+ (3/2)

n 

(5.5)
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And, Lax–Wendroff scheme, on the other hand, with upwind source term can be expressed�
1−Ki

n �t
2
�
�u� i

n=�t [(Gb +)i− (1/2)
n + (Gb −)i+ (1/2)

n ]

+
�t
2
	��

1−
�t
�x

J+�Gb +n
i+ (1/2)

n

−
��

1−
�t
�x

J+�Gb +n
i− (1/2)

n

+
��
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�x

J−�Gb −n
i− (1/2)

n

−
��

1+
�t
�x

J−�Gb −n
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n 

(5.6)

Defining now

Sb + =
�

1−
�t
�x

J+�Gb +, Sb − =
�

1+
�t
�x

J−�Gb −

In order to recover with �(r)=r the Lax–Wendroff scheme (5.6), hence preserving the
second-order to approximation, the diagonal limiting matrices have to be

�i+ (1/2)
� =

�
�
�
�
�
�
�

�
�(S1)i+ (1/2)�1

�

(S1)i+ (1/2)
�

�
· · ·

�
�(Sk)i+ (1/2)�1

�

(Sk)i+ (1/2)
�

�
�
�
�
�
�
�
�

6. NUMERICAL RESULTS

A set of tests has been selected to illustrate the performance of some of the techniques
described in the paper. In all the examples, the schemes have been applied to the system of
shallow water equations. In all of them, the non-conservative formulation of the equations has
been used with the discretization given by (2.8). When source terms are present, the semi-
implicit upwind treatment has been implemented with �=0.5. The numerical treatment at the
boundaries follows Appendix B and the entropy correlation used in all the schemes is described
in Appendix A. The CFL number used is always 90% of the maximum for stability. In spatial
second-order TVD schemes this is 0.45 with the Superbee flux limiter and 0.6 with the Minmod
flux limiter, this being 0.9 in the other schemes.

6.1. Dam-break flow

This classical test case is considered a benchmark for comparison of the performance of
numerical schemes specially designed for discontinuous transient flow. Although defined by
the system of homogeneous shallow water equations, it is widely considered a standard test
case for validation of schemes. Starting from initial conditions given by still water and two
different water levels separated by a dam, the theory of characteristics supplies an exact
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evolution solution [12] that can be used as a reference. In the example presented, two ratios of
initial water depths hL/hR=10 and hL/hR=100 are used. The solution is displayed in Figures
5–10 for t=20 s. A space interval of �x=1 m is used in the mesh. The entropy correction
produces remarkable results, the typical ‘dog-leg ’ effect being negligible. It is also remarkable
that the Lax–Wendroff scheme only with entropy correction, although displaying numerical
oscillations, is able to solve strong shocks without a TVD correction.

Figure 5. Ideal dam-break (mild shock) with first-order upwind and Lax–Wendroff schemes.

Figure 6. Ideal dam-break (strong shock) with first-order upwind and Lax–Wendroff schemes.
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Figure 7. Ideal dam-break (mild shock) with second-order in space TVD scheme.

Figure 8. Ideal dam-break (strong shock) with second-order in space TVD scheme.

The first-order upwind scheme provides a reasonably good result with a slight numerical
diffusion. The second-order in space TVD scheme tends to produce antidiffusive solutions, this
being excessive with the Superbee flux limiter. Nevertheless with the Minmod flux limiter this
is less noticeable providing a slight improvement with regard to the first-order scheme.
Second-order in space and time improves the numerical solution being the most accurate
scheme as expected.
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Figure 9. Ideal dam-break (mild shock) with second-order in space and time TVD scheme.

Figure 10. Ideal dam-break (strong shock) with second-order in space and time TVD scheme.

6.2. Steady flow in channels

When the shallow water equations are used to model hydraulic problems involving bed slope
changes and bed friction, the system is no longer homogeneous and the source terms have to
be taken into account. On the other hand, this renders it more difficult and often impossible
to find reference exact solutions. McDonald [13] proposed a set of test cases based on steady
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flow in channels of varying bed slope and/or breadth by calculating the analytical slope and
breadth functions compatible with constant discharge conditions given an analytical water
depth function. Among them, we have chosen an example consisting of a 650 m long
trapezoidal channel with a bed variation given by a slope function of x and a roughness
coefficient n=0.03. The constant discharge Q=20 m3 s−1 is imposed upstream and supercrit-
ical flow is enforced downstream. There are some points of transcritical flow. The same CFL
number of the dam-break problem is used in this case. The space interval of the mesh is
�x=6.5 m. The most important detail to note on the results is the perfect coincidence of all
the upwind based schemes with upwind treatment of the source terms and the superiority of
limitation proposed in the TVD schemes versus the results given by the Lax–Wendroff scheme
(Figures 11–14) This is an expected behaviour since it is a steady flow problem in which the
upwind treatment of the source terms produces second-order spatial accuracy even in the
first-order upwind scheme as mentioned before. In Figure 16 the ‘traditional ’ form of the TVD
scheme (pointwise and no limited treatment of the source terms) performance is shown making
evident the superiority of an upwind limited treatment of the source terms. In Figure 15 two
different forms of limiting the source terms are compared. A slight loss of accuracy excluding
the source terms of the flux limiter is patent in the discontinuities because it is the place where
the flux limiter plays a determining role.

6.3. Unsteady flow in ri�ers

In order to show the application to a practical case, an example of unsteady flow in a river is
presented now. It is a 9000 m long reach of the upstream part of the River Neila in Spain.
Being a mountain river, it is characterized by strong irregularities in the cross section, by a
rather steep part in the first kilometres and by a low base discharge (1 m3 s−1) which,
altogether, produce a high velocity basic flow, transcritical in some parts. In order to check the
conservation properties of the schemes applied, and the absence of oscillations in the TVD
schemes, a sudden increase in discharge up to 40 m3 s−1 and a critical depth is imposed at the
upstream end. This step hydrograph propagates into the river. The same CFL number as the
steady flow cases and an interval of �x=22.5 m in the mesh is used. Figures 17–20 show that
the discharge wave propagates with almost a perfectly constant value at times t=500, 1000
and 1500 s. In Figure 21 the oscillations produced by non-limiting the source terms are
displayed. Figure 22 shows the detail of the front wave where the advantages of using
higher-order approaches are noticeable, this is not so clear when reproducing steady states. In
Figure 23 the strong gradient in the bed slope of River Neila can be seen. Figures 24–28 show
some other variables as calculated with the second-order in space and time TVD scheme with
the Superbee limiter (the most used scheme) and the strong irregularities of the river are
evident.

7. CONCLUSIONS

In this work a study of different one-step explicit schemes is presented. The one-step schemes,
although slightly more complex than two-step methods (e.g. McCormack [1]) of second-order
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Figure 17. Evolution in the discharge with first-order upwind scheme.

Figure 18. Evolution in the discharge with Lax–Wendroff scheme.

of approximation, are faster for resolving shallow water equations in rivers and irregular
channels because the time elapsed calculating the sectional parameters of the channel is much
greater than the time elapsed resolving the numerical schemes. Predictor–corrector schemes
calculate twice the parameters every time step requiring double CPU time versus one-step
schemes. Moreover, one-step methods admit a semi-implicit treatment of source terms,
necessary for stabilizing the simulations when these become dominant (rivers and irregular

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 209–248



HIGH-RESOLUTION TVD SCHEMES 239

Figure 19. Evolution in the discharge with second-order in space TVD scheme with Minmod limiter.

Figure 20. Evolution in the discharge with second-order in space and time TVD scheme with Superbee
limiter.

channels), whereas two-step schemes loose the second-order of approximation in time property
when a semi-implicit treatment of source terms is applied.

The applications presented are based on conservative schemes in the non-conservative
formulation of the equations. This form takes advantage of the simplicity of the non-conserva-
tive form of the equations and produces faster and simpler schemes without loosing the
accuracy of conservative schemes.
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Figure 21. Evolution in the discharge with second-order in space and time TVD scheme with Superbee
limiter with pointwise treatment and without limiting the source terms.

Figure 22. Zoom view of the shock at t=1000 s with all the considered schemes.

The first-order upwind scheme with upwind and semi-implicit treatment of the source terms,
at this moment, is one of the best schemes simulating shallow water equations because,
although this is a first-order scheme, it is robust, reasonably simple, fast and it produces
second-order solutions in steady and quasi-steady problems. Therefore, it is the preferential
explicit scheme for steady flow. On the other hand, it is very accurate solving strong shocks
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Figure 23. Bed slope of River Neila. The strong gradient can be seen.

Figure 24. Evolution in the depth with second-order in space and time TVD scheme with Superbee
limiter.

which many other schemes cannot simulate. The conservation errors are very small and there
is an absence of oscillations. Nevertheless, the results are less accurate in unsteady flows.

The TVD second-order in space scheme is equally robust, more accurate, but slightly more
complex than the first-order upwind scheme and is the simplest high-order TVD scheme. It is
recommended to use the Minmod flux limiter with this scheme since best results are achieved
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Figure 25. Evolution in the wetted cross-section with second-order in space and time TVD scheme with
Superbee limiter.

Figure 26. Evolution in the top width with second-order in space and time TVD scheme with Superbee
limiter.

and is less restrictive in the CFL condition (CFL�2
3 versus CFL�1

2). However, this limitation
in the CFL number is compensated by an increment of 50% in the CPU time compared with
all other methods used in this work.
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Figure 27. Evolution in the fluid velocity with second-order in space and time TVD scheme with
Superbee limiter.

Figure 28. Evolution in the Froude number with second-order in space and time TVD scheme with
Superbee limiter.

Though a little more complex, the TVD second-order in space and time scheme is faster (the
CPU time is similar to the first-order schemes) than the TVD second-order in space scheme.
With this scheme the Superbee and Van-Leer flux limiters produce more accurate solutions
representing a small improvement with regard to the TVD second-order in space scheme.
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Therefore, it is the best of the analysed schemes presenting the best performance in unsteady
flows. Nevertheless, this is at the cost of greater complexity. The results on shallow water
equations are better than the first-order upwind schemes for highly unsteady flows but
identical for steady flows.

A new entropy correction has been proposed. It can be applied both to upwind or central
schemes, independently of TVD corrections, and it always improves the solutions. The dog-leg
effect is negligible as is shown in the dam-break tests. The Lax–Wendroff scheme in particular
has been enhanced with the entropy correction. If maximal accuracy in unsteady flows is
required, one of the second-order TVD schemes is recommended. In these schemes, upwind
and limiting treatment of source terms produces better results than pointwise treatment of
these terms which leads to oscillations and conservation properties. Furthermore, a slight
improvement is achieved incorporating the source terms into the flux limiter.

It must finally be stressed that the non-pointwise treatment of the source terms represents a
remarkable improvement in all the numerical schemes either upwind or not since it allows a
good balance between flux and source terms in all cases. Furthermore, when using flux limited
schemes, this balance has to be maintained by limiting in an analogous form the fluxes and the
sources.

APPENDIX A. SOLUTION TO THE ENTROPY PROBLEM WITH ARTIFICIAL
VISCOSITY

A.1. Scalar case

For the resolution of scalar propagation equation like

�u
�t

+a
�u
�x

=0, a=a(x, u)

If there is a transition from subcritical (��0) to supercritical (��0) flow between two nodal
points in the grid, the way in which the situation will evolve in one �t can be studied. This is
illustrated in Figure 29.

Figure 29. Evolution of a propagation wave in a cell of the mesh with transcritical flux at an infinitesimal
time �t.
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The value of the increments in the variable can be calculated by linear interpolation

�ui= −
ai�t

�x+ (ai+1−ai)�t
�ui+ (1/2)= −

�i�ui+ (1/2)

1+��i+ (1/2)

�ui+1= −
ai+1�t

�x+ (ai+1−ai)�t
�ui+ (1/2)= −

�i+1�ui+ (1/2)

1+��i+ (1/2)

with �=�(�t/�x). These will be increments in the first-order. Then, the viscosity necessary in
a numerical scheme to solve properly this kind of transition can be found. Concentrating on
the grid cell where the transition takes place, the conservative numerical schemes in general will
follow a wave decomposition like

�Fi+ (1/2)
L =ai+ (1/2)

L �ui+ (1/2), �Fi+ (1/2)
R =ai+ (1/2)

R �ui+ (1/2)

�ui+1= −� i+ (1/2)
L =�ui+ (1/2), �ui= −� i+ (1/2)

R =�ui+ (1/2)

Adding artificial viscosity to fix the entropy problem

�ui+1= − (� i+ (1/2)
L +�i+ (1/2))�ui+ (1/2), �ui= − (� i+ (1/2)

R −�i+ (1/2))�ui+ (1/2)

Identifying these increments with those obtained by interpolation two possible values are
found. To avoid problems, the maximum is chosen

�i+ (1/2)=max
�

� i+ (1/2)
R −

�i

1+��i+ (1/2)

,
�i+1

1+��i+ (1/2)

−� i+ (1/2)
L �

This viscosity, having been obtained from a linear interpolation, gives a correction in the
first-order, then it is valid for first-order schemes. Furthermore, considering that there will be
a finite number of transitions like this, it can be acceptable also for second-order schemes. As
the only first-order scheme considered with entropy problems is the first-order upwind, and the
second-order schemes can be expressed in terms of that first-order scheme plus second-order
corrections, the previous solution is written as

�i+ (1/2)=max
�

� i+ (1/2)
− −

�i

1+��i+ (1/2)

,
�i+1

1+��i+ (1/2)

−� i+ (1/2)
+ �

(A.1)

Other forms of artificial viscosity to fix the entropy problem are described in Reference [1].

A.2. Systems of equations

When dealing with homogeneous systems of equations, in order to study separately the
behaviour of every wave, the system is first formulated in characteristic variables
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�wk

�t
+ak �wk

�x
=0

The entropy problem can be fixed by analogy to the scalar case acting over every k component
in the decoupled system. The artificial viscosity is then defined as a diagonal matrix. For the
particular case of having a transition sub-super between nodes i and i+1 in the k component

(Vkkk)i+ (1/2)=max
�

(�k)i+ (1/2)
− −

(�k)i

1+�(�k)i+ (1/2)

,
(�k)i+1

1+�(�k)i+ (1/2)

− (�k)i+ (1/2)
+ �

(A.2)

with

�k=
�t
�x

�k

The characteristic system then is transformed to

�w�
�t

+�
�w�
�x

=V
�2w�
�x2

Returning to the physical variables by means of P and P−1, the matrices that diagonalize the
Jacobian

P
��w�

�t
+�

�w�
�x

=V
�2w�
�x2

�
�

�u�
�t

+J
�u�
�x

=PVP−1 �2u�
�x2

and the artificial viscosity is defined as

�i+ (1/2)= (PVP−1)i+ (1/2) (A.3)

with V defined in (A.2). As a last remark, the entropy problem does not only affect a transition
in fluxes and is not modified by the presence of source terms. Hence, in the presence of source
terms, (A.3) will still be used.

APPENDIX B. BOUNDARY CONDITIONS

For the treatment at the boundaries, the distinction between numerical boundary conditions
and external (imposed) boundary conditions has been exploited. The use of the characteristic
variables to obtain the correct region of dependence of a point is a suitable method to produce
numerical boundary conditions [1]. In this work, however, a similar way to generate numerical
boundary conditions for any conservative scheme keeping the degree of accuracy of the scheme
has been developed. All the conservative schemes admit a decomposition in sum of contribu-
tions from left and right like
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�u� i
n=�t(Gb i+ (1/2)

R +Gb i− (1/2)
L ) (B.1)

A decentralized treatment of source terms is supposed but a pointwise treatment is also
possible. At the boundaries, the following information can be used:

upstream: �u� i
n=�tGb i+ (1/2)

R , downstream: �u� i
n=�tGb i− (1/2)

L

Therefore, the numerical boundary conditions can be worked out from the scheme itself
whenever the domain of dependence of the boundary points is inside the calculation grid.
Otherwise, physical or imposed external information must be used. Let us call �u� i

N the
numerical increments of the variable obtained using (B.1), and �u� i

F the physical increments,
that is, the final values that we want to determine. Then, if wk is the characteristic variable
associated to a propagation velocity �k that requires a numerical boundary condition, the
following will be used.

(�wk)i
F= (�wk)i

N (B.2)

The procedure to implement this technique in the shallow water equations requires first us to
know the kind of flow at every boundary. Then, (B.1) is used to get the numerical increments
�u� i

N. Once calculated, they are used in (B.2) to obtain two possible numerical boundary
conditions, one associated to the velocity �+c and the other associated to the velocity �−c.
The characteristic variables in this problem can be defined from

�w� = 1
2c
�(c−�)�A+�Q

(c+�)�A−Q)
�

And there are four possibilities:

1. Subcritical inlet: one physical and one numerical boundary condition

(c+�)i
n�Ai

F−�Qi
F= (c+�)i

n�Ai
N−�Qi

N

2. Supercritical inlet: two physical boundary conditions

�Ai
F=datum, �Qi

F=datum

3. Subcritical outlet: one physical and one numerical boundary condition

(c−�)i
n�Ai

F+�Qi
F= (c−�)i

n�Ai
N+�Qi

N

4. Supercritical outlet: two numerical boundary conditions

�Ai
F=�Ai

N, �Qi
F=�Ai

N
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9. Bermúdez A, Vázquez ME. Upwind methods for hyperbolic conservation laws with source terms. Computers and
Fluids 1994; 23(8): 1049–1071.

10. Garcı́a Navarro P, Vázquez Cendón ME. Some considerations and improvements on the performance of Roe’s
schemes for 1D irregular geometries on numerical treatment of the source terms in the shallow water equations.
Computers and Fluids 2000; 126: 26–40.

11. Garcı́a Navarro P, Hubbard ME. Flux difference splitting and the balancing of source terms and flux gradients.
Internal Report 3/99, Department of Mathematics, University of Reading, 1999.

12. Stoker JJ. Water Wa�es. Interscience: New York, 1957.
13. McDonald I. Analysis and computation of steady open channel flow. PhD thesis, University of Reading, 1996.
14. LeVeque RJ. Numerical Methods for Conser�ation Laws. Birkhäuser: Basel, 1992.
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